Establishment of Robotic Esophagectomy Program in New Hospital

Seong Yong Park, M.D.

Assistant Professor

Department of Thoracic and Cardiovascular Surgery
Ajou University School of Medicine, Suwon, Korea

Minimally Invasive Esophagectomy

- Esophagectomy
 - One of the invasive procedures in thoracic surgery
 - Open esophagectomy vs. MIE (VATS esophagectomy, Robotic esopagectomy)

- Minimally Invasive Esophagectomy (MIE)
 - Less surgical trauma for patients
 - Low morbidities and mortalities rate
 - Difficult to learn

VATS esophagectomy

Learning Curves of VATS esophagectomy

Surg Endosc (2003) 17: 515-519

- Osugi suggested minimum 34 cases for achieving the safe VATS esophagectomy
- VATS esophagectomy needs sufficient cases of operation to achieve the learning curve
- Education and instruction from experienced surgeon is essential
- Also educated surgical assistants are needed

Why Robotic Esophagectomy?

Most advanced technology

- No needs for experienced assistants
- No needs for longer learning periods
- It can offer the most meticulous dissection for lymphadenectomy (VATS vs. Robot)

Setting the New Operations

- Capacity of surgeon
 - Experienced 20 cases of open esophagectomy as an operator
 - Observation of more than 50 cases of RATE as bed-side surgeon
 - Moved to new hospital at 2014.3
- No previous experiences on Robotic thoracic surgery in new hospital
 - Capacity of anesthesiologist
 - Capacity of assistant (SA)
 - Capacity of scrub nurse

Education

- Conference with Anesthesiologists
 - Bronchial blocker, Volume management, Ventilator management
- Education to SA (surgical assistant)
 - Few experiences of VATS operation
 - Teaching the concepts of VATS, especially VATS lobectomy
 - Review of unedited surgical video, focused on role of bedside surgeon
- Education to scrub nurses
 - Devices, Position

Current Protocol

- Robot assisted esophagectomy and total lymphadenectomy (3 ports and 1 accessory port in semiprone position)
- Gastric mobilization under laparotomy or HALS (by thoracic surgeon)
- Cervical esophagogastrostomy with EEA 25mm (substernal or posterior mediastinal route)
- Feeding jejunostomy
- Neck dissection in case of upper esophageal cancer or metastasis to upper mediastinum (by ENT)

Intubation & Port placement

Outcomes of my series (2014.5~)

No	Gender /Age	Operation time	Robot console time	Blood loss	pStage	Number of dissected LNs	Number of dissected RLN LNs	Complications
1	M/48	302	148	350	IA	70	34	RLN palsy
2	M/59	250	69	20	IIIC	44	2	
3	F/55	300	185	420	IA	42	8	RLN palsy anastomotic leakage
4	M/72	425	210	450	IIIA	32	14	
5	F/60	300	155	300	IIIB	44	14	RLN palsy
6	M/46	330	160	300	IIIC	93	7	RLN palsy
7	M/59	385	160	250	IIB	75	9	
8	M/48	360	165	250	IA	36	7	
9	M/69	490	175	200	IIB	50	9	RLN palsy
10	M/64	370	225	400	IIIC	40	7	RLN palsy
11	M/71	300	255	300	IIIC	52	14	RLN palsy
12	M/74	435	225	450	IA	39	6	Pneumonia
13	M/81	275	115	100	IA	50	6	RLN palsy, hernia
14	M/49	312	180	550	IIIC	50	13	RLN palsy
Mean	61	345.28	171.57	322.85		51.21	10.71	RLN palsy; 64.3%

Complication Profile

- Mortality; o
- RLN palsy; 9/14 (64.3%)
 - All left vocal cord palsy, recovered during follow-up periods
- Anastomotic leakage; 1/14 (7.1%)
- Hernia; 1/14 (7.1%)
 - Reoperation for reduction of colon at POD 4
- Pneumonia; 1/14 (7.1%)
 - In patient with pneumoconiosis, poor lung function
- Anastomotic stricture requiring balloon dilation; 2/14 (14.2%)

Comparison with Other Series

	van Hillegersberg	Kernstine	Boone	Puntambekar	Weksler	Suda	De La Fuente	Cerfolio	Sarkaria	Kim (Park)	Current
Publication year	2006	2007	2009	2011	2012	2012	2013	2013	2014	2015	2015
No. of patients	21	14 (12) b	47	32	11	16	50	22	21	114	14
Operation time (min)	450†	666 ^d	450 [†]	210†	439	692.5†	445	367† e	556†	419.6	345.3
Robot console time	180†	300 d	180†	100†	NR	335.5†	NR	NR	NR	206.6	171.6
EBL (mL)	950†	275 ^d	625†	80† f	200	144.5†	146	60 e	NR	208.7	322.8
Conversion (%)	3 (14.3)	1 (7.1)	7 (14.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	10 (48) ^g	1 (0.8)	0
R0 resection (%)	16 (76.2)	12 (100)	36 (76.6)	NR	11 (100)	14 (87.5)	50 (100)	22 (100)	17 (81.0)	111 (97.4)	14 (100%)
No. of dissected Lymph nodes											
total	20†	18	29†	36†	19†	37.5	20	18†	20†	43.5	51.2
RLN chains	NR	NR	NR	NR	NR	5.5	NR	NR	NR	9.7	10.7
Pneumonia (%)	10 (47.6)	3 (21.4)	21 (44.7)	2 (6.2)	1 (9.1)	1 (6.3)	5 (10.0)	NR	3 (14.3)	11 (9.6)	1 (7.1%)
Anastomotic leak	3 (14.3)	2 (14.3)	10 (21.3)	3 (9.3)	1 (9.1)	6 (37.5)	1 (2.0)	1 (4.5)	6 (28.6)	17 (14.9)	1 (7.1%)
Vocal cord palsy (%)	3 (14.3)	2 (14.3)	9 (19.1)	2 (6.2)	1 (9.1)	6 (37.5)	0 (0.0)	NR	1 (4.8)	30 (26.3)	9 (64.3%)
Mortality (%)	1 (4.8)	1 (7.1)	3 (6.4)	NR	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (4.8)	3 (2.6)	0

Robot Console & Total Operation Time

Evaluation of RLN palsy

- Preoperative vocal cord examination
- Preoperative VDL test (음성검사)
- Postoperative vocal cord examination
- Postoperative VDL test (음성검사)
- Routine vocal cord injection by ENT
- No pulmonary complications or aspiration signs among 9 patients with left vocal cord palsy

Learning Curves of Robot Esophagectomy

 The learning curve of robot esophagectomy seem s to be more flat and short than VATS esophagect omy

- Parameters
 - Operation time
 - Bleeding (amount of blood)
 - Number of dissected lymph nodes
 - Incidence of vocal cord palsy

Future Direction

- Robotic abdominal phase
- Robotic intrathoracic anastomosis; Complete robotic esophagectomy

Clinical research on learning curves of Robotic esophagectomy

RLN palsy rate below 30%

Conclusion

 Establishment of robot esophagectomy needs not only capacities of surgeon, but also support of oth er medical personnels

Endurance is most needed virtue for establishing the new operation; hospital and other medical personnels are not supportive as you expect

 Robot esophagectomy can be performed safely, if surgeon prepared many things before operation