INDICATION OF CENTRAL ECMO CANNULATION

부산대병원 송승환

First ECMO

0

- ECMO was **first used successfully in 1971** by a patient with severe lung dysfunction after a motorcycle accident.
- Developed respiratory failure **four days after** successful repair of the thoracic aorta.
- Veno-arterial ECMO with peripheral cannulation was used for 75 hours and the patient recovered

Definition

the access for inflow cannula dictates the actual configuration

Central

 Cannulation involving the aorta for the patients' arterial inflow and right atrium or both venae cavae for patients' outflow

 Aorta and femoral vein cannulation strategies

Peripheral

- Cannulation of the **femoral** and **axillary** artery for patients' arterial inflow and Femoral vein for patients' inflow.
- Right atrium and femoral artery cannulation

Meta-Analysis of Peripheral or Central Extracorporeal Membrane Oxygenation in Postcardiotomy and Non-Postcardiotomy Shock

Giuseppe Maria Raffa, MD,* Mariusz Kowalewski, MD,* Daniel Brodie, MD, Mark Ogino, MD, Glenn Whitman, MD, Paolo Meani, MD, Michele Pilato, MD, Antonio Arcadipane, MD, Thijs Delnoij, MD, Eshan Natour, MD, Sandro Gelsomino, MD, PhD, Jos Maessen, MD, PhD, and Roberto Lorusso, MD, PhD

REVIEW

Check for updates

Indication of central cannulation

PostCardio tomy Non-PostCardio tomy

History of ECMO in Korea

Optimal cannulation strategy

- ° Survival
- Myocardial recovery
- ° Management
- Complication rate

• Neonate and pediatrics

Cannulation

- ° 17 retrospective observational studies
- October 31, 2017
- A total of 1,691 patients.
- Of those, 980 patients (57.95%) underwent peripheral, and 711 (42.05%) central, cannulation for VA-ECMO

PostCardiotomy VA ECMO

- ° Unable to wean bypass
- Most commonly (85.1% of the time), VA-ECMO was instituted for PCS;
 - coronary artery bypass grafting (33.9%)
 - Valve surgery (15.4%)
 - mixed cases (8.7%).
 - aortic surgery in 103 cases (6.1%), 36 of which (2.1%) were for acute type A aortic dissection
- Primary graft failure after HT

Advantage of central cannulation

Table 2. Advantages and Disadvantages of Central Versus Peripheral Cannulation in Patients Undergoing Postcardiotomy Extracorporeal Membrane Oxygenation

	Advantages		Disadvantages
Central cannulation (aortic/atrial)	Use of originally (CPB) implanted cannulas		Opened sternum (chest closed possible)
	Antegrade flow		High bleeding risk
	Better drainage (bigger right atrium cannulas)		Cardiac compression (if exit port subxyphoid)
	Long-lasting support (subclavian artery use)		Resternotomy to remove cannulas
	Higher ECMO flow (better unloading through RA dra	inage)	More infection (sepsis)
	Patient mobilization (particularly with subclavian arte	ry access)	Higher rate of cerebral emboli
	More options (and more easily) for LV venting		Higher risk of closed aortic valve
	No harlequin (or north/south) syndrome		

Case 1

- M/67, B+, 161cm, 51kg
- 2020 VF arrest
- HFrEF, DCMP, EF 13%
- Admitted other hospital for 3 month
- Klebsiella pneumonia, worsening CKD
- transferred for VAD or HT

Echocardiography

- biventricular dysfunction
- ° all chambers dilatation
- ° severe functional MR
- Mild AR
- ° moderate to severe resting pulmonary HTN

VA ECMO support, HD 2

- ° Peripheral VA ECMO support
- ° Sono-guided percutaneous cannulation
- Distal perfusion +
- Venting -
- FMC genius console
- \circ Initial flow 2.0 L/min
- LVAD approval

LVAD implantation with HM3 Bridge to bridge, ECMO day 7

RV failure Temporary oxy-RVAD

- $^\circ\,$ PA 8 mm graft, LFV venous 21 Fr
- ECMO, PLS

LVAD + OxyRVAD

- oxyRVAD initial flow 3 L/min
- LVAD parameters
 - Pump flow 3.2 L/min
 - Pump speed 3800 rpm

Patient course, POD 3

- Extubation
- LVAD parameters
 - Pump flow 3.1 L/min
 - Pulse index 6.1
 - Pump speed 4800 rpm
- OxyRVAD
 - Flow 1.7 L/min
 - Sweep gas 2 L/min, FiO2 0.7
- Dobutamin and milrinone iv

Patient course, POD 15

- RVAD weaning and decannulation
- No chest re-open
- POD 30 general ward transfer

Echocardiography, POD 45

Patient course

- POD 2month admitted, rehabilitation
- Weigh gain
- HT waiting ?

Case summary

- RV failure after LVAD implantation
- temporary Oxy RVAD (VV ECMO, central cannulation)

	Advantages	Disadvantages
Central cannulation (aortic/atrial)	Use of originally (CPB) implanted cannulas	Opened sternum (chest closed possible)
	Antegrade flow	High bleeding risk
	Better drainage (bigger right atrium cannulas)	Cardiac compression (if exit port subxyphoid)
	Long-lasting support (subclavian artery use)	Resternotomy to remove cannulas
Higher I Patient r More op No harl	Higher ECMO flow (better unloading through RA drainage)	More infection (sepsis)
	Patient mobilization (particularly with subclavian artery access)	Higher rate of cerebral emboli
	More options (and more easily) for LV venting	Higher risk of closed aortic valve
	No harlequin (or north/south) syndrome	

Table 2. Advantages and Disadvantages of Central Versus Peripheral Cannulation in Patients Undergoing Postcardiotomy Extracorporeal Membrane Oxygenation

Non-PostCardiotomy

- AMI
- DCM
- Myocarditis
- others

JACC: HEART FAILURE © 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

ECMO as a Bridge to Left Ventricular Assist Device or Heart Transplantation

Ersilia M. DeFilippis, MD,^a Kevin Clerkin, MD, MSc,^a Lauren K. Truby, MD,^b Michael Francke, MD,^a Justin Fried, MD,^a Amirali Masoumi, MD,^a A. Reshad Garan, MD,^c Maryjane A. Farr, MD, MSc,^a Hiroo Takayama, MD, PhD,^d Koji Takeda, MD, PhD,^d Nir Uriel, MD, MSc,^a Veli K. Topkara, MD, MSc^a

VOL. 9, NO. 4, 2021

ECMO for circulatory support

- Bridging therapy
 - ECMO bridged HT poor outcome
- Korean medical insurance applies implantable LVAD 2018.09.28
- HM3 is available since 2020

Table 13.1Terms describing various indications formechanical circulatory support

Bridge to decision (BTD)/ Bridge to bridge (BTB)	Use of short-term MCS (e.g. ECLS or ECMO) in patients with cardiogenic shock until haemodynamics and end-organ perfusion are stabilized, contra-indications for long-term MCS are excluded (brain damage after resuscitation) and additional therapeutic options including long-term VAD therapy or heart transplant can be evaluated.
Bridge to candidacy (BTC)	Use of MCS (usually LVAD) to improve end-organ function in order to make an ineligible patient eligible for heart transplantation.
Bridge to transplantation (BTT)	Use of MCS (LVAD or BiVAD) to keep patient alive who is otherwise at high risk of death before transplantation until a donor organ becomes available.
Bridge to recovery (BTR)	Use of MCS (typically LVAD) to keep patient alive until cardiac function recovers sufficiently to remove MCS.
Destination therapy (DT)	Long-term use of MCS (LVAD) as an alternative to transplantation in patients with end-stage HF ineligible for transplantation or long-term waiting for heart transplantation.

Case 2

- M/45, A+, 168cm, 68kg
- HFrEF, DCMP, EF 22% diagnosed at 2014
- missed OMT due to his Job
- delayed to workup for VAD or HT
- admitted for evaluation 2022.06.20
- severe biventricular dysfunction

VA ECMO support

- sudden collapse in general ward
- intubated
- VA ECMO insertion in Cathlab
- RFA 17 Fr arterial
 - Distal perfusion
- LFV 23 Fr venous
- EBS neo
- initial flow 3.0 L/min
- HT listing

Patient course, ECMO day 4

- severe pulmonary edema
- combined pneumonia
- multi-organ failure
- de-listing HT
- plan to convert central ECMO
 - For long-term support
 - Mobilization
 - LV unloading

Central ECMO

- LA venous curved metal 24 Fr
- RA venous curved 28 Fr
- ascending aorta 10 mm graft
- PLS
- initial flow 4.5 L/min
- RA 3.5 L/min, LA 1 L/min

Patient course

- Tracheostomy
- nutrition, rehab
- pneumonia, on going liver failure

LVAD implantation with HM3 Bridge to bridge, ECMO day 34

Patient course

- POD 22 general ward transfer
 - With home ventilator
 - rehabilitation
- Discharge after 2.5 month
- Waiting HT under healthy condition
- Back to work

Case summary

- Bridge to LVAD or HT
- Effective flow, LV venting, Mobilization
- Evaluate lung and RV function strategy (remove RA drain / oxygenator)

	Advantages	Disadvantages
Central cannulation (aortic/atrial)	Use of originally (CPB) implanted cannulas	Opened sternum (chest closed possible)
	Antegrade flow	High bleeding risk
	Better drainage (bigger right atrium cannulas)	Cardiac compression (if exit port subxyphoid)
	Long-lasting support (subclavian artery use)	Resternotomy to remove cannulas
	Higher ECMO flow (better unloading through RA drainage)	More infection (sepsis)
	Patient mobilization (particularly with subclavian artery access)	Higher rate of cerebral emboli
	More options (and more easily) for LV venting	Higher risk of closed aortic valve
	No harlequin (or north/south) syndrome	

Table 2. Advantages and Disadvantages of Central Versus Peripheral Cannulation in Patients Undergoing Postcardiotomy Extracorporeal Membrane Oxygenation

Axillary cannulation

• "Sport model"

• Impella 5.5

Axillary artery

Avoidance of leg ischemia <u>Avoidance of harlequin (north/south) syndrome</u> <u>Patient mobility if prolonged support (bridge-to) required</u> Visualization of peripheral vessel and appropriate cannulation site Reduced bleeding than central access Closed sternum No cardiac compression Upper limb compartment syndrome Upper limb HPS (with graft interposition) Higher bleeding risk (site of cannulation) Higher cerebral embolic risk Lower ECMO flow (limited right chamber unloading) Retrograde flow^d Higher rate of vascular complications

Time-consuming

Summary

- Central VV ECMO (oxy-RVAD)
 - RV failure after LVAD
 - Bridge to lung transplantation combined with RV failure

- Central VA ECMO
 - bridge to LVAD or HT
 - for long-term, mobilization

THANK YOU FOR YOUR ATTENTION

Program

Information

Registration Accommodation

Past Symposium

